IJMTES – REMOVAL OF GAUSSIAN NOISE USING EDGE-BASED BILATERAL FILTER

Journal Title : International Journal of Modern Trends in Engineering and Science

Author’s Name : Jafar Ali J, Suresh Babu V

Volume 01 Issue o3 March 2014  

ISSN no:  2348-3121 

Page no: 7-9

Abstract— This paper presents the removal of Gaussian noise using Edge based bilateral filter. All the pixels of a noisy image are classified into edge region or non-edge region and the different strategies and factors are adopted in the edge based bilateral filter to maintain the features of image and at the same time the noise level is reduced. The experimental results are shown that this filter achieves very good performance in restoring real noisy images compared with other denoising algorithms

Keywords— Edge-based bilateral filter; Image restoration; Real noisy image; Edge Detector.

Reference

 [1] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoot via wavelet shrinkage,” J. Amer. Statist. Assoc., Vol. 90, No. 432, pp.1200–1224, Dec. (1995).
[2] M. K. Mihçak, I. Kozinsev, K. Ramchandran, and P. Moulin, “Lowcomplexity image denoising based on statistical modeling of wavelet coefficients,” IEEE Signal Process, Lett.. Vol. 7, No 6 pp.300-303, Jun. (1999).
[3] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image denoising using scale mixtures of gaussians in the wavelet domain,” IEEE Trans. Image Process., vol. 12, no. 11, pp. 1338-1351. Nov.(2003).
[4] L. Sendur and I. W. Selesnick, “Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency,” IEEE Trans. Signal Process., Vol. 50, No. 11, pp. 2744-2756, Nov.(2002).
[5] S. kim, W. Kang, E. Lee and J. Paik, “Wavelet-domin color image enhancement using filtered directional bases and frequency-adaptive shrinkage” IEEE Trans. Consumer Electron., Vol. 56, No. 2, pp. 1063-1070, May. (2010).
[6] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE Trans. Image Process., Vol. 16, No. 8, pp. 2080-2095, Aug.(2007).
[7] H. Yu, L. Zhao and H. Wang, “Image denoising using trivariate Shrinkage Filter in the Wavelet Domain and Joint Bilateral Filter in the Spatial Domain,” IEEE Trans. Image Process., Vol. 18, No.10, pp. 2364-2369, Oct. (2009).
[8] S. Lee, V. Maik, J. Jang, J. Shin, and J. Paik, “Noise-adaptive spatiotemporal filter for real-time noise removal in low light level images,” IEEE Trans. Consumer Electron., Vol. 51, No. 2, pp. 648-653 May. (2005).
[9] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” presented at Proc. Int. Conf. Computer Vision,(1998). pp. 839-846.
[10] M. Zhang and B. K. Gunturk, “Multiresolution bilateral filtering for image denoising”, IEEE Trans. Image Process., Vol. 17, No. 12, pp. 2324-2333, Dec. (2008).
[11] W. Kao and Y. Chen, “Multistage bilateral noise filtering and edge detection for color image enhancement,” IEEE Trans. Consumer Electron., Vol. 51, No. 4, pp. 1346-1351. Nov.(2005).
[12] A . Buades, B.Coll, and J.M. Morel, “A review of image denoising algorithms, with a new one”, SIAM Multiscale Modeling and Simulation, vol. 4, no. 2, pp.490–530,(2005).
[13] A . Buades, B.Coll, and J.M. Morel, “Nonlocal image and movie denoising”, Int. J. Computer Vision, vol. 76, no. 2, pp. 123-139,(2008).
[14] T. Thaipanich, B. T. Oh, P.-H. Wu, and C.C.J.Kuo, “Improved Image Denoising with Adaptive Nonlocal Means (ANL-Means) Algorithm” IEEE Trans. Consumer Electron., Vol. 56, No. 4, pp. 2623-2630, Nov.(2010).
[15] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 8, pp. 679-679,(1986).
[16] Test Images [Online]. Available: http://decsai.ugr.es/~javier/denoise.

Full Pdf Paper-Click Here

Scroll Up