IJMTES – SEGMENTATON OF LUNG LOBES FROM CHEST CT-SCANS USING ACCELERATED K-MEANS CLUSTERING

Journal Title : International Journal of Modern Trends in Engineering and Science

Author’s Name : Athul R S | Shally K

Volume 02 Issue 11  Year 2015

ISSN no: 2348-3121

Page no: 44-47

Abstract High-resolution   X-ray    computed    tomography (CT) imaging is widely used for clinical pulmonary applications.  The lung function varies regionally.  Because  diseases in the  pulmonary region  is usually  not  uniformly  distributed in  the  lungs,  it  is efficient while  studying  the  lungs  on  lobe- by-lobe  basis.  Automated extraction of lung lobes provides a foundation for computerized analysis of computed tomography scans   of the   chest.   Segmentation   of the   pulmonary   lobes is relevant in clinical practice   and particularly challenging for cases with some diseases like localized emphysema or incomplete fissures.  A method for automatic segmentation of pulmonary lobes from computed tomography scans of human chest is presented in this paper.   The work starts   with lung segmentation from the CT images based on region growing and standard image processing techniques.  A completely automatic and  faster  method  is  presented to  segment  the  lungs,  lobes and  pulmonary segments  from  chest  CT  scans  in  this  work. A  cost  image  for  the  clustering   is  computed   by  combining information  from  pulmonary  vessels,  bronchi,   and  fissures. A faster segmentation   method is presented which performs Accelerated K-means clustering on the cost image of computed tomography (CT) scans to subdivide the lungs into lobes.

Keywords— Lobe segmentation;  computed tomography;  Accelerated K-means

Reference

[1] Bhavanishankar.K,Dr. M.V.Sudhamani ”‘Techniques for detection Of solitary pulmonary nodules in human lung and their classifications-a survey”’ International Journal on Cybernetics Informatics (IJCI) Vol. 4, No. 1, February (2015).
[2] Xiaohui Huang, Yunming Ye, and Haijun Zhang ”‘Extensions of K-means Type Algorithms: A New Clustering Framework by Integrating Intra-cluster Compactness and Inter-cluster Separation”’, IEEE Transactions on neural networks and learning systems , Vol. 25, N0.8, August (2014).
[3] Faleh H. Mahmood, Wafaa A. Abbas, S. M. Ali ”Estimating the Lung Tumor size in CT images using Image Segmentation Techniques”, International Journal of Emerging Technology and Advanced Engineering Volume 4, Issue 7, July (2014).
[4] Kazuki Ichikawa and Shinichi Morishita,’A simple but powerful heuristic method for accelerating k-means clustering of large-scale data in life science’, IEEE Transactions (2014).
[5] Marius Muja,David G. Lowe, ’Scalable Nearest Neighbor Algorithms for High Dimensional Data’ IEEE Transactions on Pattern analysis and machine intelligence,(2014).
[6] Amrita Mohanty,S Rajkumar,Zameer Muzaar Mir, ’Analysis of Color Images using Cluster based Segmentation Techniques’, International Journal of Computer Applications (09758887) Volume 79 No.2, October (2013).
[7] Bianca Lassen, Eva M. van Rikxoort, Michael Schmidt, Sjoerd Kerkstra, Bram van Ginneken, and Jan-Martin Kuhnigk, ’Automatic Segmentation of the Pulmonary Lobes From Chest CT Scans Based on Fissures, Vessels, and Bronchi’, IEEE Transactions on medical imaging, Vol. 32,February (2013).
[8] Amiya Halder, Avijit Dasgupta ’Color Image Segmentation using Rough Set based K-Means Algorithm’ International Journal of Computer Applications (0975 8887) Volume 57 No.12, November (2012).
[9] Ms.Chinki Chandhok, Mrs.Soni Chaturvedi, Dr.A.A Khurshid,’An Approach to Image Segmentation using Kmeans Clustering Algorithm’ ,International Journal of Information Technology (IJIT), Volume 1, Issue 1, August (2012).
[10] Q.Wei,Y.Hu,J.MacGregor, and G. Gelfand, Automatic recognition of major fissures in human lungs, Int. J. Comput. Assist. Radiol. Surg., Vol. 7, No. 1, pp. 111123, (2012).
[11] M.C. Jobin Christ and R.M.S. Parvathi, ’Segmentation of Medical Image using Clustering and Watershed Algorithms’, American Journal of Applied Sciences 8 (12): 1349-1352, (2011).
[12] Eva M.Van Rikxoort, Mathias Prokop, Bartjan de Hoop, Max A. Viergever, Josien P. W. Pluim, and Bram van Ginneken ’Automatic Segmentation of Pulmonary Lobes Robust Against Incomplete Fissures’, IEEE Transactions on medical imaging, Vol. 29, No. 6, June (2010).
[13] Eva M. van Rikxoort, Bartjan de Hoop, Saskia van de Vorst, Mathias Prokop, and Bram van Ginneken,’Automatic Segmentation of Pulmonary Segments from Volumetric Chest CT Scans’,IEEE Transactions on medical imaging, VOL., April (2009).
[14] Li Zhang, Eric A. Homan,and Joseph M.’Atlas-Driven Lung Lobe Segmentation in Volumetric X-Ray CT Images’ IEEE Transactons on medical imaging, vol. 25, No. 1, January (2006).
[15] Ming Luo, Yu-Fei Ma, Hong-Jiang Zhang, ’A Spatial Constrained K-Means Approach to Image segmentation’ Department of Computer Science University of Maryland.

Full Paper: Click Here

Scroll Up