Journal Title : International Journal of Modern Trends in Engineering and Science

Author’s Name : Lakshmi A S | Nissa Surling S N

Volume 02 Issue 12  Year 2015 

ISSN no: 2348-3121  

Page no: 8-12

Abstract An Echocardiogram is a non-invasive procedure used to assess the heart’s function and structures. This paper proposes  a new hybrid  approach to estimate  the cardiac  cycle phases  in  2-D  echocardiographic  images  as  a  first  step  in cardiac  volume  estimation.  Here  analysis  of the  atrial  systole and  diastole  events  by  using  the  geometrical  position  of the mitral  valve and a set of image features  is done. The proposed algorithm is based on an organization of image processing methods and Support Vector Machine as a classifier to robustly extract   anatomical information.  An original   set of image feature is used and derived to recognize the cardiac phases. The aforestated approach is performed in a denoising scenario. In this scenario,   the images are corrupted with Gaussian noise distribution. This hybrid algorithm does not involve any manual   tracing   of the boundaries for segmentation   process. The algorithm is realized as computer aided diagnosis (CADi) software.  A dataset of 160 images that include both normal and infarct   cardiac   pathologies were used.  An  accuracy   of 93 percentage  and  a  1.2s  in  terms   of  execution  time  of  CADi application was  reported in  a  cardiac  cycle estimation  task. The significant  improvement of this paper  is the introduction of  a  hybrid   method  and  set  of  image  features   that  can  be helpful  for  automatic detection  applications  without  any  user intervention.

Keywords— Support Vector Machine; Cardiac Phase Cycle; CAD; Image features


[1] Lei Clifton, David A.Clifton, Yang Zhang, Peter Watkinson, Lionel Tarassenko, Hujun Yin,”Probabilistic Novelty Detection With Support Vector Machines,” in IEEE trans on reliability, vol.63, No.2, June (2014).
[2] Porras A.R, Alessandrini.M, Piella.G, ”Improved Myocardial Motion Estimation Combining Tissue Doppler and B-mode Echocardiographic Images”, IEEE Trans, Vol.33, Issue11,(2014).
[3] Gifani.P, Behnam.H, Sani.Z, ”Noise Reduction of Echocardiographic Images based on Temporal Information”, IEEE Trans,Vol:61, Issue:4,(2014).
[4] Yushi Chen,Xing Zhao, Zhouhan Lin, ”Optimizing Subspace SVM Ensemble for Hyperspectral Imagery Classification”, IEEE Journal of Volume 7, Issue 4, (2014).
[5] Dorin Bibicu and Luminita Moraru,”Cardiac Cycle Phase Estimation in 2-D Echocardiographic Images Using an Artificial Neural Network,” in IEEE trans on Biomedical eng. Vol.60, No.5, May (2013).
[6] Paul Kaufmann, Kyrre Glette, Theimo Gruber, Marco Platzner, Jim Torresen and Bernard Sick,” Classification of Electromyographic Signals: Comparing Evolvable Hardware to Conventional Classifiers”,in IEEE Trans on Evolutionary Computation, Vol.17, No.1, February (2013).
[7] Jianxin Wu,” Efficient HIK SVM Learning for Image Classification”,Image Processing, IEEE Trans, Vol.21, (2012).
[8] Nandagopalan.S, Adiga B.S, Deepak.N,” Auotomatic Segmentation and Ventricular Border Detection of 2D Echocardiographic Images Combining K-Means Clustering and Active Contour Model”, IEEE Conference, ICCNT, (2010).
[9] Dr.Maya Nayak and Er. Jnana Ranjan Tripathy,” Pattern Classification Using Neuro Fuzzy and Support Vector Machine (SVM) – A Comparative Study,” in IJRACCE ,vol.2 , issue.5, May (2013).
[10] M.Ridhwan Tamjis, M.Naufal Mansor, Paulraj M P, Sazali Yaacob, A.Nazri Abdullah, Raymond B.W.Heng, ”Performance Comparison of the Artificial Neural Network and the K-Nearest Neighbor Classifiers in Classroom Speech Intelligibility Prediction Application,” in International Journal of Research and Reviews in Artificial Intelligence Vol. 1, No.1, March (2011).
[11] Naga Sravanthi Kota, G.Umamaheswara Reddy,”Fusion Based Gaussian noise Removal in the images using curvelets and wavelets with Gaussian filter”, IJIP, vol:(5) Issue(4): (2011).
[12] Yudong Zhang, Lenan Wu, ’Fast Document Image Binarization Based On an Improved Adaptive Otsu’s Method and Destination Word Accumulation’, Southeast University, Nanjng China, Journal of Computational Information systems, 7:6(2011).
[13] Maythapolnun Athimethphat, ’A Review on Global Binarization Algorithms for Degraded Document Images’, Assumption University, Thailand, AUJ.T.14(3):188-195(Jan 2011).
[14] P.Subhashini, N.Sridevi,’ An optimal Binarization Algorithm based on Particle Swarm Optimization’, IJSCE,ISSN:2231-2307,volume- 1,Issue-4,september (2011).
[15] Brij Mohan Singh, ’Parallel Implementation of Otsu’s Binarization Approach on GPU’, College of Engineering Roorkee, IJCA, volume 32-No.2, October (2011).
[16] Canny Edge Detection,09gr820,March 23,(2009).
[17] Zhen Mei, Qi Shen, Baoxian Ye,” Hybridized KNN and SVM for gene expression data classification,” in Mei.et.al October (2008).
[18] Assoc.Prof Dr.Cem Unsalan,EE562,”Image Processing”.
[19] Scene Text Binarization and Recognition-Textbook.
[20] Shashank V.C, Suhas V.Kumar,”Image Denoising Methodologies”,Department of Information Science and Engg,SJB Institute of Technology, Bangalore.
[21] Rafael C.Gonzalez, Richard E.Woods,”Digital Image Processing”, Third Edition.
[22] MATLAB-creating Graphical User Interfaces
[23] Jose L Zamorano, ”Echocardiography in the Detection and Monitoring of Heart Failure”.
[24] Lawrence.G.Rudski, Wyman W.Lai,”Guidelines for the Echocardiographic Assessment of the Right Heart in Adults:”,Journal of American Society of Echocardiography,Vol:23-No:7.
[25] Jun Cheng, Songli Lei,”Image Denoising Based On Hybrid Fourier and Neigbourhood Wavelet Coefficients”,2nd International Conference on EMEIT-(2012).
[26] Sahar Jafar Pour,Zahra Sedgi,”A Robusst Brain MRI Classification with GLCM Features”, IJCA,vol:37-No:12, Jan 2012.
[27] ”Edge Detection”,Slides from Cornelia Fermuller and Marc Pollefeys.
[28] Maythapolnun Athimethphat, ’A Review on Global Binarization Algorithms for Degraded Document Images’, Assumption University, Thailand, AUJ.T.14(3):188-195.
[29] Prof.P.K.Biswas,”Digital Image Processing

Full Paper: Click Here