IJMTES – IMPLEMENTATION OF DISTRIBUTED MAXIMUM POWER POINT TRACKING METHOD FOR PARTIALLY SHADED PHOTOVOLTAIC SOURCE USING AN INTERLEAVED FLYBACK CONVERTER

Journal Title : International Journal of Modern Trends in Engineering and Science

Author’s Name : C Deviabirami | S Rathinamala

Volume 02 Issue 09  Year 2015

ISSN no: 2348-3121

Page no: 8-11

Abstract The series connection of Photovoltaic Module (PV) in the string result in the lowest string current under partially shaded condition of PV module. It reduces the overall output power of solar panel. In this paper, a new efficient Distributed Maximum Power Point Tracking (DMPPT) method is used to improve the output power of partially shaded PV source. Current compensation of each PV module occurs by regulating the voltage by connecting an interleaved flyback (dc-dc) converter across each PV module for maximizing the output power. The operation of DMPPT is implemented in hardware.

Keywords— Partially shaded Photovoltaic module; Distributed Maximum Power Point Tracking (DMPPT); Current compensation; interleaved flyback converter

Reference

[1] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans.Power Electron., Vol. 20, No. 4, pp. 963–973, Jul. (2005).
[2] B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, “Fuzzylogic-control approach of a modified hillclimbing method for maximumpower in micro grid standalone PV systems,” IEEE Trans. Power Electron.,Vol. 26, No. 4, pp. 1022–1030, Apr. (2011).
[3] J.-M. Kwon, B.-H.Kwon, and K.-H. Nam, “Three-phase photovoltaicsystem with three-level boosting MPPT control,” IEEE Trans. PowerElectron., Vol. 23, No. 5, pp. 2319–2327, Sep. (2008).
[4] S. Jain andV.Agarwal, “A newalgorithm for rapid tracking of approximatemaximum power point in photovoltaic systems,” IEEE Power Electron.Lett., Vol. 2, No. 1, pp. 16–19, Mar. (2004).
[5] M. A. S. M. a. M. Sarvi, “Design, simulation and construction of a newfuzzy-based maximum power point tracker for photovoltaic applications,”Iran. J. Sci. Technol., Vol. 29, No. B1, pp. 1–10, (2005).
[6] C. Larbes, S. M. Ait Cheikh, T. Obeidi, and A. Zerguerras, “Genetic algorithms optimized fuzzy logic control for the maximum power pointtracking in photovoltaic system,” Renewable Energy, Vol. 34, No. 10,pp. 2093–2100, Oct. (2009).
[7] D. D. C. Lu and V. G. Agelidis, “Photovoltaic-batterypowered DC bus System for common portable electronic devices,” Power Electron., IEEETrans., Vol. 24, No. 3, pp. 849–855, Mar. (2009).
[8] D. P. Hohm and M. E. Ropp, “Comparative study of maximum power point tracking algorithms,” in Proc. 28th IEEE Photovoltaic Specialists Conf., Sep. 2000, pp. 1699–1702
[9] K. Irisawa, T. Saito, I. Takano, and Y. Sawada, “Maximum power point tracking control of photovoltaic generation system under nonuniform insolationby means of monitoring cells,” in Proc. 28th IEEE Photovoltaic Specialists Conf., Sep. (2000), pp. 1707–1710.
[10] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic maximum power point trackingcontrol system,” IEEE Trans. Power Electron., Vol. 16, No. 1, pp. 46–54,Jan. (2001).
[11] W. Xiao,M. G. J. Lind,W. G. Dunford, and A. Capel, “Real-time identificationof optimal operating points in photovoltaic power systems,” IEEETrans. Ind. Electron., Vol. 53, No. 4, pp. 1017–1026, Jun. (2006).

Full Paper: Click Here

 

Scroll Up