Journal Title : International Journal of Modern Trends in Engineering and Science


Author’s Name : T R Lekhaa  unnamed

Volume 03 Issue 10 2016

ISSN no:  2348-3121

Page no: 110-113

Abstract – Agriculture planning plays a significant role in economic growth and food security of agro-based country. Information technology has helped agricultural sector in managing and maintaining the necessary details. The crop(s) plays an important role in agriculture planning. Many researchers studied prediction of yield rate of crop, prediction of weather, soil classification and crop classification for agriculture planning. The proposed method resolves in selecting the crop(s) based on prediction yield rate influenced by parameters (e.g. weather, soil type, water density, crop type, pesticides) and also focuses on crop yield prediction, soil classification, pesticide prediction and online trading based on agriculture commodities.   

Keywords— Soil Composition, Climate, Plant Composition, PH Content, Crop Prediction Algorithm, Pesticide Prediction


  1. Rumelhart DE, Hinton GE, Williams RJ, ”Learning internal representations by error propagation”. vol. 1, chapter 8. The MIT Press, Cambridge, MA (USA), pp:418-362, 1986.
  2. Liu J, Goering CE, Tian L, ”Neural network for setting target corn yields”. T ASAE 44(3): 705-713, 2001.
  3. Drummond ST, Sudduth KA, Joshi A, Birrel SJ, Kitchen NR, ”Statistical and neural methods for site-specific yield prediction”. T ASABE 46 (1): 5-14, 2003.
  4. Safa B, Khalili A, Teshnehlab M, Liaghat A, ”Artificial neural networks application to predict wheat yield using climatic data. Proc”. 20th Int. Conf. on IIPS, Jan. 10-15, Iranian Meteorological Organization, pp: 1-39, 2004.
  5. Sudduth K, Fraisse C, Drummond S, Kitchen N ”Integrating spatial data collection, modeling and analysis for precision agriculture”. First Int. Conf. on Geospatial Information in Agriculture and Forestry, vol. 2, pp: 166-173, 1998.
  6. Irmak A, Jones JW, Batchelor WD, Irmak S, Boote KJ, Paz JO, ”Artificial neural network model as a data analysis tool in precision farming”. T ASABE 49(6): 2027-2037, 2006.
  7. Vapnik V, Lerner A,” Pattern recognition using generalized portrait method”. Automat Remote Contr 24: 774-780, 1963.
  8. Smola A, Schlkopf B,” A tutorial on support vector regression”. Stat Comput 14(3): 199-222, 2004.
  9. Vapnik V, Golowich S, Smola A,”Support vector method for function approximation, regression estimation, and signal processing”. MIT Press, Cambridge, MA, USA, pp: 281-287, 1997.
  10. Hand D, Mannila H, Smyth P, ”Principles of data mining”. MIT Press, 2001.
  11. Zhang L, Zhang J, Kyei-Boahen S, Zhang M,”Simulation and prediction of soybean growth and development under field conditions”. Am-Euras J Agr Environ Sci 7(4): 374-385, 2010.
  12. Quinlan JR, ”Learning with continuous classes”. Proc. AI92, 5th Aust. Joint Conf. on Artificial Intelligence (Adams & Sterling, eds.), World Scientific, Singapore, pp: 343-348, 1992.
  13. Breiman L, Friedman JH, Olshen RA, Stone CJ, ”Classification and regression trees”. Wadsworth, Belmont, CA, USA, 1984.
  14. Wang Y, Witten I, ”Inducing model trees for continuous classes”. Proc. 9th Eur. Conf. Machine Learning (van Someren M & Widmer G, eds), pp: 128-137, 1997.
  15. Uysal I, Altay HG, ”An overview of regression techniques for knowl- edge discovery”. Knowl Eng Rev 14: 319-340, 1999.
  16. L. Breiman, ”Random forests”. Machine Learning, vol. 45, no. 1, pp. 532, 2001.
  17. J. Friedman, ”Greedy function approximation: A gradient boosting machine”. Ann. Statist., vol. 29, no. 5, pp. 11891536, 2001.
  18. Rie Johnson, Tong Zhang, ”Learning Nonlinear Functions Using Reg- ularized Greedy Forest”. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 36, No. 5, May 2014.
  19. Thoranin Sujjaviriyasup, Komkrit Pitiruek, ”Agricultural Product Fore- casting Using Machine Learning Approach”. Int. Journal of Math. Analysis, Vol. 7, no. 38, 1869 1875, 2013.
  20. K. Krishna Kumar, K. Rupa Kumar, R. G. Ashrit, N. R. Deshpande and J. W. Hansen, ”Climate Impacts on Indian Agriculture”. International Journal of climatology, 24: 13751393, 2004.
  21. Washington Okori, Joseph Obua, ”Machine Learning Classification Technique for Famine Prediction”. Proceedings of the World Congress on Engineering 2011 Vol II WCE 2011, July 6 – 8, London, U.K, 2011.
  22. Anastasiya Kolesnikova, Chi-Hwa Song, Won Don Lee, ”Applying UChooBoost algorithm in Precision Agriculture”. ACM International Conference on Advances in Computing, Communication and Control, Mumbai, India, January 2009.
  23. Miss.Snehal, S.Dahikar, Dr.Sandeep V.Rode, ”Agricultural Crop Yield Prediction Using Artificial Neural Network Approach”. International Journal of Innovative Reasearch in Electrical, Electronic, Instrumentation and Control Engineering, Vol. 2, Issue 1, January 2014.o:112-115