IJMTES – AN IMPROVEMENT OF IMAGE REGISTRATION BASED ON SIFT ALGORITHM ALONG WITH NON LINEAR DIFFUSION

Journal Title : International Journal of Modern Trends in Engineering and Science

Author’s Name : G Suganya | D Vasanthi  unnamed

Volume 03 Issue 04 2016

ISSN no:  2348-3121

Page no: 70-73

Abstract – In general, registration methods can be divided into two categories: 1) area – based methods and 2) features based methods. The multiplicative speckle noise, SIFT has a limited performance when directly applied to synthetic aperture radar (SAR) image. In   this proposed SAR image registration approach is introduce to generate the scale space [i.e., nonlinear diffusion scale space (NDSS)], which has an advantage of preserving edges and details over the linear GSS. Meanwhile the ratio of exponential average weighted average (ROEWA) operator is used to compute the gradient information during the construction of NDSS. In this proposed method is to improve the registration accuracy, feature points are extracted using a variable block size with SIFT.

Keywords— Area-Based Method, Image Registration, Feature-Based Method, Registration Accuracy 

Reference

  1. F. Wang et al., “Unsupervised change detection on SAR images using triplet Markov field model,” IEEE Geosci. Remote Sens. Lett., vol. 10, no. 4, pp. 697–701, Jul. 2013.
  2. D. G. Lowe, “Distinctive image features form scale-invariant keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.
  3. H. Goncalves, L. Corte-Real, and J. A. Goncalves, “Automatic image registration through image segmentation and SIFT,”IEEE Trans. Geosci. Remote Sens., vol. 49, no. 7, pp. 2589–2600, Jul. 2011.
  4. F. Dellinger, J. Delon, Y. Gousseau, J. Michel, and F. Tupin, “SAR-SIFT: A SIFT-like algorithm for applications on SAR images,” inProc. IEEE IGARSS, 2012, pp. 3478–3481.
  5. P. Schwind, S. Suri, P. Reinartz, and A. Siebert, “Applicability of the SIFT operator for geometrical SAR image registration,”Int. J. Remote Sens., vol. 31, no. 8, pp. 1959–1980, Mar. 2010.
  6. P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE features,” inProc. ECCV, 2012, pp. 214–227.
  7. S. Wang, H. You, and K. Fu, “BFSIFT: A novel method to find feature matches for SAR image registration,”IEEE Geosci. Remote Sens. Lett., vol. 9, no. 4, pp. 649–653, Jul. 2012.
  8. L. P. Dorado-Muñoz, M. Vélez-Reyes, A. Mukherjee, and B. Roysam, “A vector SIFT detector for interest point detection in hyperspectral im-agery,”IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4521–4533, Nov. 2012.
  9.  P. Pietro and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7, pp. 629–639, Jul. 1990.
  10. J. Weickert, B. M. T. H. Romeny, and M. A. Viergever, “Efficient and reliable schemes for nonlinear diffusion filtering,” IEEE Trans. Image Process., vol. 7, no. 3, pp. 398–410, Mar. 1998.
  11. R. Fjortoft, A. Lopes, P. Marthon, and E. Cubero-Castan, “An optimal multiedge detector for SAR image segmentation,”IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 793–802, May 1998.
Scroll Up