IJMTES – REDUCING POWER CONSUMPTIONIN MULTIPLE ACCESS CHANNELS BY EXPLOITING PACKET DROPPING AND TRANSMITTER BUFFERING USING CSI

Journal Title : International Journal of Modern Trends in Engineering and Science

Author’s Name : R.SabariNathan  unnamed

Volume 03 Issue 06 2016

ISSN no:  2348-3121

Page no: 1-4

Abstract – Wireless Adhoc Network is a temporary network that consists of individual devices which can communicate with each other without any help from infrastructure. Nodes in the network can communicate by using multi hop transmission. CSI  is an channel properties of  a communication link to sink nodes and signal propagation from transmitter to reciver. An opportunistic scheduling scheme which exploits the DoF available through continuity constraint and average packet drop parameters and aims at minimizing the average system energy. The malicious attack to the packet dropping and transmitter buffering will be determining by the instantaneous CSI. Improving the network lifetime of the packet by minimizing the energy level by the statistical CSI. The channel allocation to the packet transmitter to reciver using CSI(channel state information).  And also reducing the power consumption using the Event-to-sink reliable algorithm. In the propose CSI is used to store the packet in buffer and resend the packet to corresponded nodes.

Keywords— Multi Hop Transmission,Event-To-Sinkreliable Algorithm,CSI Techniques 

Reference

  1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wirelesssensor networks: A survey,”Comput. Netw., vol. 38, no. 4, pp. 393–422,Mar. 2002.
  2. S. Diamond and M. Ceruti, “Application of wireless sensor network tomilitary information integration,” inProc. 5th IEEE Int. Conf. Ind. In-form., Vienna, Austria, Jun. 2007, vol. 1, pp. 317–322.
  3. I. Bekmezci and F. Alagz, “Energy efficient, delay sensitive, fault tolerantwireless sensor network for military monitoring,”Int. J. Distrib. Sens.Netw., vol. 5, no. 6, pp. 729–747, 2009.
  4. A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,“Wireless sensor networks for habitat monitoring,” inProc. 1st ACM Int.Workshop Wireless Sens. Netw. Appl., New York, NY, USA, Sep. 2002,pp. 88–97.
  5. J. Zhang, W. Li, Z. Yin, S. Liu, and X. Guo, “Forest fire detection systembased on wireless sensor network,” inProc. 4th IEEE Conf. Ind. Electron.Appl., Xi’an, China, May 2009, pp. 520–523.
  6. L. Ruiz-Garcia, L. Lunadei, P. Barreiro, and I. Robla, “A review of wire-less sensor technologies and applications in agriculture and food industry:State of the art and current trends,”Sensors, vol. 9, no. 6, pp. 4728–4750,Jun. 2009.
  7. N. Wang, N. Zhang, and M. Wang, “Wireless sensors in agriculture andfood industry–recent development and future perspective,”Comput. Elec-tron. Agriculture, vol. 50, no. 1, pp. 1–14, Jan. 2006.
  8. A. Wheeler, “Commercial applications of wireless sensor networks usingzigbee,”IEEE Commun. Mag., vol. 45, no. 4, pp. 70–77, Apr. 2007.
  9. W. Chen, L. Chen, Z. Chen, and S. Tu, “Wits: A wireless sensor networkfor intelligent transportation system,” inProc. 1st Int. Multi-Symp. Com-put. Comput. Sci., Hangzhou, China, Jun. 2006, vol. 2, pp. 635–641.
  10. B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu,E. Shih, H. Balakrishnan, and S. Madden, “Cartel: A distributed mobilesensor computing system,” inProc. 4th Int. Conf. Embedded Netw. Sens.Syst., New York, NY, USA, Oct. 2006, pp. 125–138.
  11. L. Yu, N. Wang, and X. Meng, “Real-time forest fire detection withwireless sensor networks,” inProc. Int. Conf. Wireless Commun., Netw.MobileComput., Wuhan, China, Sep. 2005, vol. 2, pp. 1214–1217.
  12. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A surveyon sensor networks,”IEEECommun. Mag., vol. 40, no. 8, pp. 102–114,Aug. 2002.
  13. J. Lian, K. Naik, and G. B. Agnew, “Data capacity improvement ofwireless sensor networks using non-uniform sensor distribution,”Int. J.Distrib. Sens. Netw., vol. 2, no. 2, pp. 121–145, Apr.–Jun. 2006.
  14. J. Li and P. Mohapatra, “An analytical model for the energy hole problemin many-to-one sensor networks,” inProc. 62nd IEEE Veh. Technol. Conf.,Dallas, TX, USA, Sep. 2005, vol. 4, pp. 2721–2725.
  15. J. Luo and J.-P. Hubaux, “Joint mobility and routing for lifetime elonga-tion in wireless sensor networks,” inProc. IEEE INFOCOM, Miami, FL,USA, Mar. 2005, vol. 3, pp. 1735–1746.
  16. R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data mules: Modeling andanalysis of a three-tier architecture for sparse sensor networks,”AdHocNetw., vol. 1, no. 2/3, pp. 215–233, Sep. 2003.
  17. X. Li, A. Nayak, and I. Stojmenovic, Sink Mobility in Wireless SensorNetworks. Hoboken, NJ, USA: Wiley, 2010, pp. 153–184.
Scroll Up