Journal Title : International Journal of Modern Trends in Engineering and Science

Author’s Name : K Lavanya | M Lishalini | R Senthil Kumaran  unnamed

Volume 03 Issue 07 2016

ISSN no:  2348-3121

Page no: 90-94

Abstract – In wireless sensor networks, energy is the scarce resource in each individual sensor nodes. This phenomenon limits the network lifetime and reduces the battery power. In the existing model, the one way Anova model is used for adaptive data collection in periodic sensor networks. The modified Bezier curves are also used to define the application classes and allow for sampling adaptive rate. In the proposed scheme, the spatio-temporal correlation between the nodes is determined in order to identify the neighbouring nodes generating similar sets of data. In this work the efficient data collection aware of spatio -temporal correlation (EAST) is used. Simulation result reveals that this approach can be effectively used to minimize energy consumption in sensor networks and improves network longevity.  

Keywords— sensor networks, residual energy, spatial correlation, temporal correlation 


  1. Masoum, N. Meratnia and P. Havinga, An energy-efficient adaptive sampling scheme for wireless sensor networks, in: Proceedings of the 8th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, IEEE, 2013, pp. 231–236.
  2. B. Gedik, L. Liu and P. Yu, Asap:an adaptive sampling approach to data collection in sensor networks, IEEE Trans. Parallel Distrib. Syst. 18 (12) (2007) 1766–1783.
  3. R. Bergelt, M. Vodel and W. Hardt, Energy efficient handling of big data in embedded, wireless sensor networks, in: Proceedings of Sensors Applications Symposium (SAS), 2014 IEEE, February 2014, pp. 53–58.
  4. E. Chan and S. Han, Energy efficient residual energy monitoring in wireless sensor networks, Int. J. Distrib. Sens. Netw. 5 (6) (2009) 748– 758
  5. D. Laiymani and A. Makhoul, Adaptive data collection approach for periodic sensor networks, in: Proceedings of 9th International Wireless Communications and Mobile Computing Conference (IWCMC), 2013, pp. 1448–1453.
  6. T.A. Razak, R. Rajakumar and M. Rameeja, Improving wireless sensor network performance using bigdata and clustering approach, Int. J. Sci.Res. Publ. 4 (8) (August 2014) 1–7.
  7. Z. Aghbari, I. Kamel and T. Awad, On clustering large number of data streams, Intell. Data Anal. 16 (1) (2012) 69–91.Boukerche and S. Samarah, An efficient data extraction mechanism for mining association rules from wireless sensor networks, in: Proceedings of the IEEE International Conference on Communications (ICC’07),June 2007, pp. 3936–3941.
  8. M.C. Vuran, O.B. Akan and I.F. Akyildiz, Spatio-temporal correlation: theory and applications for wireless sensor networks, Comput. Networks (2004) 245–259.
  9. I.F. Akyildiz, M.C. Vuran, B. Akan, On exploiting spatial and temporal correlation in wireless sensor networks, in: Proceedings of WiOpt 2004: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, pp. 71–80.
  10. S. Yoon, C. Shahabi, Exploiting spatial correlation towards an energy efficient clustered aggregation technique (cag) [wireless sensor network applications],in: IEEE International Conference on Communications, ICC 2005, vol. 5, pp.3307–3313
  11. J. Lu, Impacts of Self-organized Mechanisms in Wireless Sensor Networks,Ph.D. Thesis, Thesis presented at L’Institute National des Sciences Apliquees deLyon, 2008
  12. Liu, K. Wu, J. Pei, An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal correlation, IEEE Trans. Parallel Distrib. Syst. 18 (2007) 1010–1023.
  13. G.A. Shah, Muslim Bozyigit: Exploiting Energy-aware Spatial Correlation in Wireless Sensor Networks, COMSWARE, 2007.
  14. M.C. Vuran, O.B. Akan, I.F. Akyildiz, Spatio-temporal correlation: theory and applications for wireless sensor networks, Comput. Networks 45 (2004) 245– 259.
  15. Deligiannakis, Y. Kotidis, Geosensor networks, in: S. Nittel, A. Labrinidis, A.Stefanidis (Eds.), Book chapter: Exploiting Spatio-temporal Correlations for Data Processing in Sensor Networks, Springer-Verlag, 2008, pp. 45–65.
  16. N.D. Pham, T.D. Le, K. Park, H. Choo, Enhance exploring temporal correlation for data collection in wsns, in: Proceedings of the IEEE International Conference on Research, Innovation and Vision for the Future, RIVF ’08, IEEE, 2008, pp. 204–208.
  17. J.X. Yu, M. Kitsuregawa, H.V. Leong (Eds.), 7th International Conference on Advances in Web-Age Information Management,Lecture Notes in Computer Science, vol. 4016, Springer, 2006.
Scroll Up