Journal Title : International Journal of Modern Trends in Engineering and Science

Author’s Name : M Prabhavathi | S Kalpana  unnamed

Volume 03 Issue 07 2016

ISSN no:  2348-3121

Page no: 153-156

Abstract – In this venture to propose a programmed technique taking into account anisotropic sifting and coordinated channel to extricate the sore zone and portion veins. Injury characterization is then performed in view of a factual examination of the veins’ qualities, for example, thickness, tortuosity and thickness. This proposed strategy for the programmed grouping of laryngeal tumors in view of veins attributes. Initial step of pictures in the first NBI endoscopic perspectives pictures anxiety is first test confronted and overcome by our calculation, i.e., the watched extensive variety of shapes and attributes that characterize locales of enthusiasm for further investigation. The second step is to introduces the yields of the ROI division calculation. Great results were accomplished for the cases appeared, with the divided districts covering no less than 20% of the injuries. The vicinity of irregularity, for example, tumors, polyps, polypoid sores results in appearance of harsh surface in endoscopic picture.    

Keywords— Endoscopic; Image Analysis; Tumor Detection  


  1. Barker M; Dort JC: Laryngeal examination: a comparison of mirror examination with a rigid lens system.. J-Otolaryngol., 1991, Apr; 20(2): 100-3.
  2. Yanagisawa E; Horowitz JB; Yanagisawa K; Mambrino LJ: Comparison of new telescopic video microlaryngoscopic and standard microlaryngoscopic techniques. Ann-Otol-Rhinol-Laryngol., 1992, Jan; 101(1): 51-60.
  3. Hirano M; Yoshida Y; Yoshida T; Tateishi O: Strobofiberscopic video recording of vocal fold vibration. Ann-Otol-Rhinol-Laryngol., 1985, Nov-Dec; 94(6 Pt 1): 588-90.
  4. Gorkisch K; Franke KD: Video technique for documentation of endoscopic findings.HNO, 1990, Dec; 38(12): 457-8.
  5. D’Agostino MA; Jiang JJ; Hanson DG: Endoscopic photography: solving the difficulties of practical application. Laryngoscope, 1994, Aug; 104(8 Pt 1): 1045-7.
  6. Davis RK: Endoscopic surgical management of glottic laryngeal cancer. Otolaryngol Clin North Am., 1997;30:79-86.
  7. Blackwell KE; Calcaterra TC; Fu YS: Laryngeal dysplasia: epidemiology and treatment outcome. Ann Otol Rhinol Laryngol., 1995;104:596-602.
  8. Hektor J; Jansen J; Broicher F; Grebe R: Digital Video Workbench (DVW) – Ein Hilfsmittel zur Online Bildverarbeitung. Bildverarbeitung fü r die Medizin. Lehmann T, Scholl I, Spitzer K (Hrsg.), 1996, 339-43.
  9. Shafer SA: Using Color to Separate Reflection Components. Color Research and Application, 1985, 10(4): 210-8.
  10. Lee H-C: Method for computing the scene illuminant chromaticity from specular highlights. JOSA A, 1986, 3(10):1694-9.
  11. S. Deepti and B. Dhandra, “Abnormality detection in endo-scopic images of throat cancer by morphological operations,” Indian Streams Research Journal, vol. 1, no. 4, 2011.
  12. M. Liedlgruber and A. Uhl, “A summary of research targeted at computer-aided decision support in endoscopy of the gastroin-testinal tract,” tech. rep., Department of Computer Sciences, University of Salzburg, Austria, 2011.
  13. S. Paris, P. Kornprobst, and J. Tumblin, ”Bilateral Filtering: Theory and Applications,”, vol. 4. Hanover, MA, USA: Now Publishers Inc., 2009.
  14. T. M. Lehmann and C. Palm, “Color line search for illuminant estimation in real-world scenes,” Journal of the Optical Society of America A, vol. 18, no. 11, pp. 2679–2691, 2001.
  15. S. Gross, M. Kennel, T. Stehle, J. Wulff, J. Tischendorf, C. Trautwein, and T. Aach, “Polyp segmentation in NBI colonoscopy,” in Bildverarbeitung f ¨ ur die Medizin 2009, Infor-matik aktuell, pp. 252–256, Springer Berlin Heidelberg, 2009.
  16. B. V. Dhandra, R. Hegadi, M. Hangarge, and V. S. Malemath, “Analysis of abnormality in endoscopic images using combined HSI color space and watershed segmentation,” in 18th Interna-tional Conference on Pattern Recognition, 2006. ICPR 2006., vol. 4, pp. 695–698, 2006.
  17. M. Zeinali, S. Saryazdi, and H. Rafsanjani, “Image denoising via combination anisotropic diffusion and bilateral filtering,” in International Conference on Computational Intelligence and Communication Networks (CICN), pp. 421–425, 2011.
  18. M. Dooner and J. P. Siebert, “Disparity refinement with confidence and intensity guided anisotropic diffusion,” Poster presented at Computer Vision and Machine Learning Summer School, 25 July 2011.