Journal Title : International Journal of Modern Trends in Engineering and Science


Author’s Name : A Santhanalakshmi | L Saranya  unnamed

Volume 03 Issue 07 2016

ISSN no:  2348-3121

Page no: 187-188

Abstract – Early detection of lung cancer can help in a sharp decrease in the lung cancer mortality rate, which accounts for more than 17% percent of the total cancer related deaths. Our purpose is to develop an efficient system for detection of lung nodules from parenchyma region of lung and classify the nodule into either cancerous (Malignant) or non-cancerous(Benign). The proposed system consists of following steps: i) the image taken is enhanced initially and then the region of interest is cropped, where the user can select the area to be cropped.  ii) The multilevel patch-based context analysis are extracted. iii) decision tree classifier are implemented as the classifiers. The proposed work was able to detect the lung nodule that falls in close proximity to the lung wall. Expected results demonstrate promising classification performance.     

Keywords— Decision Tree; Lung Nodule; Multilevel Patch  


  1. J. J. Erasmus, J. E. Connolly, H. P. McAdams, and V. L. Roggli, “Solitary pulmonary nodules: Part I. morphologic evaluation for differentiation of benign and malignant lesions,” Radiographics, vol. 20, no. 1, pp. 43–58, 2000.
  2. D. Wu, L. Lu, J. Bi, Y. Shinagawa, K. Boyer, A. Krishnan, and M. Salganicoff, “Stratified learning of local anatomical context for lung nodules in CT images,” in Proc. Comput. Vis. Pattern Recog., 2010, pp. 2791–2798.
  3. R.A. Ochs, J.G. Goldin, F. Abtin, H. J. Kim, K. Brown, P. Batra, D. Roback, M. F. McNitt-Gray, and M. S. Brown, “Automated classification of lung bronchovascular anatomy in CT using adaboost,” Med. Image Anal., vol. 11, no. 3, pp. 315–324, 2007.
  4. A. Farag, S. Elhabian, J. Graham, A. Farag, and R. Falk, “Toward precise pulmonary nodule descriptors for nodule type classification,” in Proc. Med. Image Comput. Comput.-Assisted Intervention Conf. Lecture Notes Comput. Sci., 2010, vol. 13, no. 3, pp. 626–633.
  5. A. A. Farag, “A variational approach for small-size lung nodule segmentation,” in Proc. Int. Symp. Biomed. Imag., 2013, pp. 81–84.
  6. D. Xu, H. J. van der Zaag-Loonen, M. Oudkerk, Y.Wang, R. Vliegenthart, E. T. Scholten, J. Verschakelen,M. Prokop, H. J. de Koning, and R. J. van Klaveren, “Smooth or attached solid indeterminate nodules detected at baseline CT screening in the NELSON study: Cancer risk during 1 year of follow-up,” Radiology, vol. 250, no. 1, pp. 264–272, 2009.
  7. S. Diciotti, G. Picozzi, M. Falchini, M. Mascalchi, N. Villari, and G. Valli, “3-D segmentation algorithm of small lung nodules in spiral CT images,” IEEE Trans. Inf. Technol. Biomed., vol. 12, no. 1, pp. 7–19, Jan. 2008.
  8. B. Zhao, “Automatic detection of small lung nodules on CT utilizing a local density maximum algorithm,” J. Appl. Clin.Med. Phys., vol. 4, no. 3, pp. 248–260, 2003.
  9. Y. Lee, T. Hara,H. Fujita, S. Itoh, and T. Ishigaki, “Automated detection of pulmonary nodules in helical CT images based on an improved templatematching technique,” IEEE Trans.Med. Imag., vol. 20, no. 7, pp. 595–604, Jul. 2001.
  10. A. A. Farag, S. Y. Elhabian, S. A. Elshazly, and A. A. Farag, “Quantification of nodule detection in chest CT: A clinical investigation based on the ELCAP study,” in Proc. 2nd Int. Workshop Pulmon. Image Process., 2010, pp. 149–160.