Journal Title : International Journal of Modern Trends in Engineering and Science


Author’s Name : V Singaravelan | P Kannan | S Prabu Venkateswaranunnamed

Volume 04 Issue 01 2017

ISSN no:  2348-3121

Page no: 21-25

Abstract – With the advancements in the semiconductor industry, designing a high performance processor is a prime concern. Multiplier is one of the most crucial parts in almost every digital signal processing applications. This paper addresses the implementation of an 8-bit multiplier design employing CMOS full adder, full adder using Double Pass Transistor (DPL) and Multioutput carry look ahead logic (CLA). DPL adder avoids the noise margin problem and speed degradation at low value of supply voltages associated with complementary pass transistor (CPL) logic circuits. Multioutput carry look ahead adder leads to significant improvement in the speed of the overall circuitry. The investigation is carried out with simulation runs on HSPICE environment using 90 nm process technologies at 25 °C. Finally, the design guidelines are derived to select the most suitable topology for the desired applications. Investigation reveals that multiplier design using Multioutput carry look ahead adder proves to be more speed efficient in comparison with the other two considered design strategies.

Keywords Double Pass Transistor (DPL) adders, Carry lookahead (CLA) adders, Domino CMOS logic, DPL Multiplier, CLA Multiplier


  1. Mansi Jhamb, Garima, “Design, implementation and performance comparison of multiplier topologies in power-delay space,”Himanshu LohaniUniversity School of Information and Communication Technology, GGSIPU, Sector-16C, Dwarka, New Delhi, India, vol. A247, pp. 529-551, Augest 2015. (references)
  2. Y.-J. Jang, Y. Shin, M.-C. Hong, J.-K. Wee, S. Lee, Low-Power 32bit×32bit Multiplier Design with Pipelined Block-Wise Shutdown: High Performance Computing – HiPC 2005, 12th International Conference, Goa, India, Springer, 3769, pp.398–406, 2005.
  3. Y. Liu, S. Furber, The Design of an Asynchronous Carry-Lookahead Adder Based on Data Characteristics: Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation, 15th International Workshop, PATMOS 2005, Leuven, Belgium, Springer, 3728, pp. 647–656, 2005.K. Elissa, “Title of paper if known,” unpublished.
  4. K. Tiwari, A. Khopade, P. Jadhav, Optimized Carry Look-Ahead BCD Adder Using Reversible Logic: Technology Systems and Management Communications in Computer and Information Science, First International Conference, ICTSM 2011,Mumbai, India, Springer, 45, pp. 260–265, 2011.
  5. O. Kavehei, M. Rahimi Azghadi, K. Navi, A.P. Mirbaha, Design of robust and high-performance 1-bit CMOS Full Adder for nanometer design, IEEE Comput. Soc. Annu. Symp. VLSI ISVLSI 08 Montpellier Fr., pp. 10–15, 2008.
  6. Z. Huang, High-level optimization techniques for low-power multiplier design(Ph.D. thesis), University of California,2003.
  7. Y. Jiang, A. Al-Sheraidah, Y. Wang, E. Sha, J.-G. Chung, A novel multiplexer-based low-power full adder, IEEE Trans. Circ. Syst. II: Exp. Briefs 51 (2004) 345–348.
  8. M. Ito, D. Chinnery, K. Keutzer, Low power multiplication algorithm forswitching activity reduction through operand decomposition, in: 21st International Conference on Computer Design, 2003, pp. 21–26.
  9. A. Kishore Kumar, D. Somasundareswari, V. Duraisamy, T. ShunbagaPradeepa,Design of Low Power Multiplier with Energy Efficient Full Adder Using DPTAAL, Hindawi Publishing Corporation, 2013, doi:10.1155/2013/157872.
  10. C. Efstathiou, Z. Owda, Y. Tsiatouhas, New high-speed multioutput carry look-ahead adders, IEEE Trans. Circ. Syst. II 60(10) (2013) 667–671.
  11. M. Morris Mano, M.D. Ciletti, Digital Design, fourth ed., Pearson, 2008.
  12. S. Perri, P. Corsonello, F. Pezzimenti, V. Kantabutra, Fast and energy-efficient Manchester carry-bypass adders, IEEE Proc. Circ. Dev. Syst. 151 (6) (2004)497–502.
  13. Z. Wang, G. Jullien, W. Miller, J. Wang, S. Bizzan, Fast adders using enhanced multiple-output domino logic, IEEE J. Solid-St. Circ. 32 (2) (1997) 206–214.
  14. S.-M. Kang, Y. Leblebici, CMOS Digital Integrated Circuits Analysis and Design, third ed., Tata McGraw-Hill, 2003.
  15. G. Dimitrakopoulos, D. Nikolos, High-speed parallel-prefix VLSI Ling adders, IEEE Trans. Computers 54 (2) (2005) 225–231.
  16. M. Haghparast, K. Navi, A novel reversible BCD adder for nanotechnology based systems, Am. J. Applied Sci. 5 (3) (2008)282–288 ISSN 1546-9239.