Journal Title : International Journal of Modern Trends in Engineering and Science


Author’s Name : K Rajesh Babu

Volume 04 Issue 10 2017

ISSN no:  2348-3121

Page no: 26-31

Abstract – Power electronics devices are widely used in different fields and for different residential applications. The expansion of their field of applications is related to the knowledge of the device behavior and their practical performances. The renewable energy sources such as PV modules, fuel cells or energy storage devices such as super capacitors or batteries deliver output voltage at the range of around 15 to 40 VDC. A boost converter is used to clamp the voltage stresses of all the switches in the interleaved converters caused by the leakage inductances present in the practical coupled inductors to a low voltage level. This paper presents a dc-dc power converter integrated closed loop system to attain high stability factor in such a way to obtain in a single conversion stage. The maximum energy extraction from photovoltaic panels, battery charging and discharging dynamic control, and high voltage step-up also is operating with soft-switching capability. This review is mainly focused on high efficiency step-up DC/DC converters with high voltage gain. The results are obtained through Matlab/Simulink software package.

Keywords – DC–DC Power Conversion, Capacitor Modules, Interleaved Methodology, PI Controller


  1. Shih-Ming Chen,Tsorng-Juu Liang.”A Boost Conver ter With Capacitor Multiplier and Coupled Inductor for Ac Module Applications,” IEEE Transaction on Industrial Electronics, vol.60,No.4,pp.1503-1511,April 2013.
  2. T. Shimizu, K. Wada, and N. Nakamura, “Flyback- type single-phase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system,” IEEE Tr ans. Power Electron., vol. 21, no. 5, pp. 1264–1272, Jan. 2006 .
  3. C. Rodriguez and G. A. J. Amaratunga, “Long-lif etime power inverter for photovoltaic ac modules,” IEEE Trans. Ind. Elect ron., vol. 55, no. 7, pp. 2593–2601, Jul. 2008.
  4. W. Li and X. He, “Review of non-isolated high s tep-up dc/dc converters in photovoltaic grid-connected applications,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1239–1250, Apr. 2011 .
  5. S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,”IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1292–1306, Sep./Oct . 2005.
  6. B. Jablonska, A. L. Kooijman-van Dijk, H. F. Kaan, M. van Leeuwen, G. T. M. de Boer, and H. H. C. de Moor, “PV-prive project at ECN, five years of experience with small-scale ac module PV systems,” inProc. 20th Eur. Photovoltaic Sol. Energy Conf., Barcelona, Spain, Jun. 2005, pp. 2728–2731.
  7. J. J. Bzura, “The ac module: An overview and update on self-contained modular PV systems,” inProc. IEEE Power E ng. Soc. Gen. Meeting, Jul. 2010, pp. 1–3.
  8. J. Falin, “Designing dc/dc converters based on ZETA topology,” Analog Appl. J., pp. 16–21, 2Q, 2010. [Online]. Available: http://focus.ti. com/lit/an/slyt372/slyt372.pdf
  9. B. R. Lin and F. Y. Hsieh, “Soft-switching Zeta -flyback converter with a buck-boost type of active clamp,”IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2813–2822, Oct. 2007.
  10. T. B. Marchesan, M. A. Dalla-Costa, J. M. Alonso, and R. N. do Prado, “Integrated Zeta-flyback electronic ballast to supply high-intensity discharge lamps,”IEEE Trans. Ind. Electron., vol. 5 4, no. 5, pp. 2918– 2921, Oct. 2007.
  11. D. Murthy-Bellur and M. K. Kazimierczuk, “Two- transistor Zeta-flyback dc-dc converter with reduced transistor voltage stress,”Electron. Lett., vol. 46, no. 10, pp. 719–720, May 2010.
  12. T. F. Wu, S. A. Liang, and Y. M. Chen, “Design optimization for asymmetrical ZVS PWM Zeta converter,”IEEE Trans. Ae rosp. Electron. Syst., vol. 39, no. 2, pp. 521–532, Apr. 2003.
  13. M. J. Bonato, F. T. Wakabayashi, and C. A. Canesin, “A novel voltage step-down/up ZCS-PWM Zeta converter,” inCon f. Rec. IEEE IAS Annu. Meeting, 2000, pp. 2448–2454.
  14. B. Axelrod, Y. Berkovich, S. Tapuchi, and A. Ioinovici, “Steep conversion ration ´ Cuk, Zeta, and sepic converters based on a switched coupled-inductor cell,” inProc. IEEE Power Electron . Spec. Conf., 2008, pp. 3009–3014.
  15. B. Axelrod, Y. Berkovich, and A. Ioinovici, “S witched-capacitor/ switched-inductor structures for getting transformer less hybrid dc-dc PWM converters,”IEEE Trans. Circuits Syst. I, Reg. Projects, vol. 55, no. 2, pp. 687–696, Mar. 2008.
  16. F. L. Luo, “Switched-capacitorized dc/dc converters,” in Proc. IEEE ICIEA, 2009, pp. 1074–1079.
  17. G. Zhu and A. Ioinovici, “Switched-capacitor power supplies: dc voltage ratio, efficiency, ripple, regulation,” in Proc. IEEE ISCAS, 1996, pp. 553–556.
  18. B. Axelrod, Y. Berkovich, and A. Ioinovici, “Transformer less dc-dc converters with a very high dc line-to-load voltage ratio,” in Proc. IEEE ISCAS, 2003, vol. 3, pp. 435–438.
  19. L. S. Yang, T. J. Liang, and J. F. Chen, “Transformer less dc-dc converters with high step-up voltage gain,” IEEE Tra ns. Ind. Electron., vol. 56, no. 8, pp. 3144–3152, Aug. 2009.
  20. T. J. Liang and K. C. Tseng, “Analysis of inte grated boost-fly back step-up converter,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 152, no. 2, pp. 217–225, Mar. 2005.
  21. Q. Zhao and F. C. Lee, “High-efficiency, high step-up dc-dc converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65–73, Jan. 2003.
  22. F. L. Luo and H. Ye, “Positive output multiple -lift push-pull switched capacitor Luo converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 594–602, Jun. 2004.
  23. F. L. Luo, “Six self-lift dc-dc converters, voltage lift technique,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1268–1272, Dec. 2001.
  24. D. Zhou, A. Pietkiewicz, and S.´ Cuk, “A three -switch high-voltage converter,”IEEE Trans. Power Electron., vol. 14, no . 1, pp. 177–183, Jan. 1999.
  25. M. Zhu and F. L. Luo, “Voltage-lift-type ´ Cuk converters: Topology and analysis,”IET Power Electron., vol. 2, no. 2, p p. 178–191, Mar. 2009.
  26. J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, and J. S. Kim, “High boost converter using voltage multiplier,” in Proc. IEEE IECON, 2005, pp. 567–572.
  27. K. B. Park, H. W. Seong, H. S. Kim, G. W. Moon, and M. J. Youn, “Integrated boost-sepic converter for high step-up applications,” in Proc. IEEE Power Electron. Spec. Conf., 2008, pp. 944–950 .
  28. S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up dc-dc converter for fuel cell energy conversion system,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2007–2017, Jun. 2010.
  29. R. J. Wai and R. Y. Duan, “High step-up converter with coupled inductor,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025– 1035, Sep. 2005.
  30. R. J. Wai, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-efficiency dc-dc converter with high voltage gain and reduced switch stress,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 354–3
    64, Feb. 2007.
  31. B. Axelrod, Y. Berkovich, and A. Ioinovici, “H ybrid switched capacitor— ´ Cuk/Zeta/Sepic converters in s tep-up mode,” in Proc. IEEE ISCAS, 2005, vol. 2, pp. 1310–1313.
  32. L. S. Yang, T. J. Liang, H. C. Lee, and J. F. Chen, “Novel high step-up dc-dc converter with coupled-inductor and voltage-doubler circuits,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4196–4206, Sep. 2011.
  33. H.-L. Do, “Zero-voltage-switching synchronous buck converter with a coupled inductor,” IEEE Trans. Ind. Electron., vol . 58, no. 8, pp. 3440– 3447, Aug. 2011