IJMTES – A NOVEL AUXILIARY SWITCH CURRENT RESET SCHEME FOR ZVS SPWM FULL BRIDGE INVERTER

Journal Title : International Journal of Modern Trends in Engineering and Science

Paper Title : A NOVEL AUXILIARY SWITCH CURRENT RESET SCHEME FOR ZVS SPWM FULL BRIDGE INVERTER

Author’s Name : V Gomathi | Saranraj Sunnamed

Volume 04 Issue 05 2017

ISSN no:  2348-3121

Page no: 87-91

Abstract – This project proposes a development of auxiliary switching scheme for full bridge inverter is used to provide zero voltage switching (ZVS) condition for all the controlled switches. In this paper, the gate pulses are generating from Sinusoidal Pulse Width Modulation (SPWM). The reverse recovery of the body-diode of MOSFT is relieved and ZVS is realized for both main and auxiliary switches. The filter inductors are significantly reduced with higher switching frequency. The simulation results are analyzing in MATLAB with 98.8% efficiency.

Key words— Zero voltage switching, Sinusoidal Pulse Width Modulation, Full bridge inverter

References

  1. Anula, K., Saroj, R., 2013. A review of particle swarm optimization and its applications in solar photovoltaic system. Appl. Soft Comput. 13, 2997–3006.
  2. Bidram, A., Davoudi, A., Balog, R.S., 2012. Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays. IEEE J. Photovolt., 532–546
  3. Chao, K.H., 2014. An extension theory-based maximum power tracker using a particle swarm optimization algorithm. Energy Convers. Manage. 86, 435–442.
  4. Esram, T., Chapman, P.L., 2007. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22, 439–449
  5. Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M., 2009. A technique for improving P&O MPPT performances of double-stage grid connected photovoltaic systems. IEEE Trans. Ind. Electron. 56, 4473–4482
  6. Gao, L., Dougal, R.A., Liu, S., Iotova, A.P., 2009. Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions. IEEE Trans. Ind. Electron. 56, 1548–1556
  7. Kamarzaman, N.A., Tan, C.W., 2014. A comprehensive review of maximum power point tracking algorithms for photovoltaic systems. Renew. Sustain. Energy Rev. 37, 585– 598
  8. Kimball, J.W., Krein, P.T., 2008. Discrete-time ripple correlation control for maximum power point tracking. IEEE Trans. Power Electron. 23, 2353–2362.
  9. Kotti, R., Shireen, W., 2012. Fast converging MPPT control of photovoltaic systems under partial shading conditions. In: IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 16– 19.
  10. Lee, D.Y., Noh, H.J., Hyun, D.S., Choy, I., 2003. An improved MPPT converter using current compensation method for small scaled PV-applications. In: Proc. 18th Annu. IEEE APEC 1, pp. 540-545
  11. Liu, F., Duan, S., Liu, F., Liu, B., Kang, Y., 2008. A variable step size INC MPPT method for PV systems. IEEE Trans. Ind. Electron. 55, 2622–2628.
  12. Liu, Y.H., Huang, J.W., 2011. A fast and low cost analog maximum power point tracking method for low power photovoltaic systems. Sol. Energy 85, 2771–2780.
  13. Liu, Y.H., Liu, C.H., Huang, J.W., Chen, J.H., 2013.Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments. Sol. Energy 89, 42–53.
  14. Liu, Y.H., Chen, J.H., Huang, J.H., 2014. Global maximum power point tracking algorithm for PV systems operating under partially shaded conditions using the segmentation search method. Sol. Energy 103, 350–363
Scroll Up